Silencing of D-Lactate Dehydrogenase Impedes Glyoxalase System and Leads to Methylglyoxal Accumulation and Growth Inhibition in Rice

نویسندگان

  • Baoguang An
  • Jie Lan
  • Xiaolong Deng
  • Silan Chen
  • Chao Ouyang
  • Huiyun Shi
  • Jing Yang
  • Yangsheng Li
چکیده

D-Lactate is oxidized by two classes of D-lactate dehydrogenase (D-LDH), namely, NAD-dependent and NAD-independent D-LDHs. Little is known about the characteristics and biological functions of D-LDHs in rice. In this study, a functional NAD-independent D-LDH (LOC_Os07g06890) was identified in rice, as a result of alternative splicing events. Characterization of the expression profile, subcellular localization, and enzymatic properties of the functional OsD-LDH revealed that it is a mitochondrial cytochrome-c-dependent D-LDH with high affinity and catalytic efficiency. Functional analysis of OsD-LDH RNAi transgenic rice demonstrated that OsD-LDH participates in methylglyoxal metabolism by affecting the activity of the glyoxalase system and aldo-keto reductases. Under methylglyoxal treatment, silencing of OsD-LDH in rice resulted in the accumulation of methylglyoxal and D-lactate, the decrease of reduced glutathione in leaves, and ultimately severe growth inhibition. Moreover, the detached leaves of OsD-LDH RNAi plants were more sensitive to salt stress. However, the silencing of OsD-LDH did not affect the growth under photorespiration conditions. Our results provide new insights into the role of NAD-independent D-LDHs in rice.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dietary Fructose Feeding Increases Adipose Methylglyoxal Accumulation in Rats in Association with Low Expression and Activity of Glyoxalase-2

Methylglyoxal is a precursor to advanced glycation endproducts that may contribute to diabetes and its cardiovascular-related complications. Methylglyoxal is successively catabolized to D-lactate by glyoxalase-1 and glyoxalase-2. The objective of this study was to determine whether dietary fructose and green tea extract (GTE) differentially regulate methylglyoxal accumulation in liver and adipo...

متن کامل

A comparative study of methylglyoxal metabolism in trypanosomatids

The glyoxalase system, comprising the metalloenzymes glyoxalase I (GLO1) and glyoxalase II (GLO2), is an almost universal metabolic pathway involved in the detoxification of the glycolytic byproduct methylglyoxal to d-lactate. In contrast to the situation with the trypanosomatid parasites Leishmania major and Trypanosoma cruzi, this trypanothione-dependent pathway is less well understood in the...

متن کامل

Presence of unique glyoxalase III proteins in plants indicates the existence of shorter route for methylglyoxal detoxification.

Glyoxalase pathway, comprising glyoxalase I (GLY I) and glyoxalase II (GLY II) enzymes, is the major pathway for detoxification of methylglyoxal (MG) into D-lactate involving reduced glutathione (GSH). However, in bacteria, glyoxalase III (GLY III) with DJ-1/PfpI domain(s) can do the same conversion in a single step without GSH. Our investigations for the presence of DJ-1/PfpI domain containing...

متن کامل

Formate excretion in urine of rats fed dimethylaminoazobenzene-rich diets: the possibility of formate formation from D-lactate.

This experiment was carried out to evaluate the possibility of degradation of d-lactate into formate and acetaldehyde. In order to induce hyperproduction of d-lactate in rats. Donryu male albino rats were fed diets containing 0.064% 3'-methyl-4-dimethylaminoazobenzene (3'-MDAB), 4'-methyl-4-dimethylaminoazobenzene (4'-MDAB) or 2-methyl-4-dimethylaminoazobenzene (2-MDAB) for 10 weeks. During the...

متن کامل

Glyoxalase III from Escherichia coli: a single novel enzyme for the conversion of methylglyoxal into D-lactate without reduced glutathione.

A single novel enzyme, glyoxalase III, which catalyses the conversion of methylglyoxal into D-lactate without involvement of GSH, has been detected in and purified from Escherichia coli. Of several carbonyl compounds tested, only the alpha-ketoaldehydes methylglyoxal and phenylglyoxal were found to be substrates for this enzyme. Glyoxalase III is active over a wide range of pH with no sharp pH ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017